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ABSTRACT

While early empirical evidence has supported the case for learned in-
dex structures as having favourable average-case performance, little
is known about their worst-case performance. By contrast, classical
structures are known to achieve optimal worst-case behaviour. This
work evaluates the robustness of learned index structures in the
presence of adversarial workloads. To simulate adversarial work-
loads, we carry out a data poisoning attack on linear regression
models that manipulates the cumulative distribution function (CDF)
on which the learned index model is trained. The attack deteriorates
the fit of the underlying ML model by injecting a set of poisoning
keys into the training dataset, which leads to an increase in the
prediction error of the model and thus deteriorates the overall per-
formance of the learned index structure. We assess the performance
of various regression methods and the learned index implementa-
tions ALEX and PGM-Index. We show that learned index structures
can suffer from a significant performance deterioration of up to
20% when evaluated on poisoned vs. non-poisoned datasets.
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1 INTRODUCTION

In traditional database design, tree-based data structures such as B+
Trees and their variants have seen wide adoption due to their rela-
tive ease of implementation and optimal worst-case computational
complexity guarantees. B+ Trees are general-purpose data struc-
tures that make no prior assumptions about the data distribution
and do not take advantage of any patterns that might be specific
to the data that the data structure stores. In practice however, real-
world data often follows some underlying pattern that, if modeled
appropriately, could significantly speed-up the data retrieval pro-
cess. For instance, given a set of contiguous integer keys (e.g., keys
from 1 to 100 million), the key itself could be used as an offset for
the index, thus reducing the time required to look-up any key in
the dataset from O(logn) for a B+ Tree to O(1). This increase in
performance is what Kraska et al. hoped to achieve when they first
introduced their work on Learned Index Structure (LIS) models
[21]. Even though the concept of a LIS is still new, it has already
led to a surge of inspiring results that leverage ideas from Machine
Learning (ML), data structures, and database systems [7], [6], [31],
(15], [1], [32], [5], [30], [23].[16], [11], [19], [8], [13], [27].

The core idea of a LIS is to model the functionality of a data
structure as a prediction task, i.e., given an input key, the objective
of the LIS is to predict the key’s position in a key-sorted collection
of key-value pairs. This approach allows the use of continuous
functions to encode the data and leverage learning algorithms to
approximate key lookup. Specifically, the approach proposed by
Kraska et al. [21] is to approximate the Cumulative Distribution
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Function (CDF) of the keys. Given a key k as an input, the CDF
returns the probability that the chosen key takes a value less than or
equal to k (i.e, P(X < Key k)). Based on this observation, one can
use the CDF to compute the number of keys less than the queried
key k and infer the key’s memory location. In the context of a LIS,
the CDF is used to provide a mapping from the key k to its position
in a sorted array. The underlying learning task is one of supervised
regression, or simply function interpolation [31].

While the LIS approach may be beneficial in a certain average-
case sense, it also carries the risk of exploitation by a malicious
adversary. Indeed adversarial analysis is an important tool for un-
derstanding worst-case performance and whether LIS approaches
are worst-case competitive with classical structures.

2 RELATED WORK
2.1 Learned Index Structures

Since the first published work on learned index structures by Kraska
et al. [21], the research community has explored a variety of ideas
on how LIS could be used as a replacement for traditional index
structures such as B+ Trees. Contrary to a B+ Tree, learned index
structures rely on an underlying ML model to approximate the CDF.
The most commonly used models are the Piecewise Linear Approx-
imation (PLA) and Linear Spline (LS) models. The PLA model is
a variant of the linear regression model that tries to approximate
the CDF of the dataset by dividing it into variable-sized segments.
The first and last keys of each segment are then used to construct a
linear approximation of the data, resulting in a PLA model. As an
alternative, LS models fit the data by approximating the CDF via
linear spline points.

Table 1: Overview of LIS implementations

Index Model Updates Open-Source Reference
RMI Multiple X v [21]
RadixSpline LS X v [19]
PGM-Index PLA X v [11]
ALEX PLA v v [7]
LIPP PLA v v [9]
COLIN PLA v X [35]

Table 1 overviews the most relevant learned index implementa-
tions published to date. A majority of indexes rely on a single type of
model to construct the learned index: LS is used by RadixSpline [19]
and PLA is used by Piecewise Geometric Model (PGM)-Index [11],
Adaptive Learned indEX (ALEX) [7] and a variety of other com-
petitors [9], [35]. The Recursive Model Index (RMI) [21] is the only
LIS that supports a variety of model types, which gives the RMI a
greater degree of flexibility, but also increases the complexity of
tuning the RMI [24].
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2.2 Adversarial Machine Learning

The term Adversarial Machine Learning describes the study of
Machine Learning (ML) techniques against an adversarial opponent
that aims to fool a model by supplying deceptive input. Adversarial
ML has emerged in recent years as a new field, mostly driven by new
advancements in computing capabilities [17], [2]. A main domain
of focus has been computer vision.

Data poisoning attacks are widely studied within Adversarial ML
and have been applied in a variety of contexts such as poisoning
of neural network or recommender systems [14], [28]. To date, re-
search on data poisoning has mostly been focused on classification
and anomaly detection [3], [33], [4], while adversarial regression
has largely remained underrepresented [22].

A gradient-based optimization framework for linear classifiers
like Lasso or Ridge Regression was first introduced by Xiao et al.
[34]. Jagielski et al. [18] have built upon this work and also proposed
a defense mechanism against poisoning attacks called TRIM. An-
other novel attack algorithm on regression learning was proposed
by Miiller et al. [29]. It works by manipulating the training dataset
in a way that causes maximum disturbance of the data points. In
their experimental evaluation, the authors were able to observe
that the Mean Squared Error (MSE) of the regressor increased by
150 percent after inserting only 2% of poisoned samples.

Poisoning attacks on LIS models differ significantly from previ-
ous attempts of poisoning linear regression models, because they
require poisoning of the CDF. This task is challenging, because ev-
ery insertion affects the values of all points in the dataset. The first
researchers to study this new area of research were Kornaropou-
los et al., who formulated two poisoning attacks on the hierar-
chical structure of the RMI model [20]. By leveraging the attacks
described in [20], the researchers were able to increase the error of
the poisoned RMI model by a factor of up to 300x compared to a
non-poisoned model. We expand on this initial idea and perform a
comprehensive empirical evaluation across a variety of models (e.g.,
SLR, LogTE, DLogTE, 2P, TheilSen, and LAD discussed in [9], as
well as ALEX [7] and PGM [11]), open-sourcing our ready-to-use
poisoning benchmark to the research community.

3 PRELIMINARIES
3.1 Terminology

In this work we focus on poisoning attacks against LIS models based
on Piecewise Linear Approximation (PLA). To define the model,
we let D = {x;,y;}}., denote the data used by a learned index
structure, with x € R representing the input data vector and y € R
representing the output variable. In ordinary linear regression,
predictions are made via a linear function f(x, a, b) = a’ x + b with
parameters a € R? and b € R chosen to minimize average loss
L(D,a,b) = % > (f(xia,b) - y;)?, also known as the Mean
Squared Error.

In the context of our data poisoning attacks, a key is denoted
by k and its key universe (range of potential keys) as K, where
|K| = m. Similar to previous work on LIS models, it is assumed that
keys are given as non-negative integer and that the total order of
the keyset can always be derived. It is further assumed that each
key is associated with a record and that the records are stored in
an in-memory array that is sorted with respect to the key values.
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3.2 Adversarial Model

3.2.1 Adversary’s Goals. When executing a poisoning attack against
a LIS model, the adversary’s goal is to corrupt the learned index
model during the training phase (i.e., index construction), so that its
performance deteriorates during the test phase (i.e., prediction of
the position of the given key). In this work, we focus on poisoning
availability attacks, where the adversary’s goal is to deteriorate
the performance of a learning-based data structure. Specifically,
the objective of the adversary is to generate a small number of
poisoning keys that are used to augment the training dataset that
consists of so-called legitimate keys. The assumption is that training
a LIS model with both the poisoning keys and legitimate keys will
result in a model whose performance is worse compared to a LIS
model that is trained on only the legitimate keys.

3.2.2  Adversary’s Capabilities & Knowledge. Data poisoning at-
tacks usually distinguish between two attack scenarios: white-box
and black-box poisoning attacks.

In this work, we focus on white-box poisoning attacks where
the attacker is assumed to have full access to the training data, ie.,
the keyset K and the slope and intercept parameters a and b of the
linear regression [25], [3], [20]. When performing the attack, the
adversary is able to inject up to p maliciously-crafted poisoning
keys into the training set prior to training the LIS model. The total
number of data points in the training set is given by N = n + p,
where n denotes the number of legitimate keys and p the number
of poisoning keys in the training data. Similar to previous work on
poisoning attacks, it is assumed that the adversary is able to control
only a tiny fraction of the training set limited by the poisoning
percentage a, where a = p/n [18], [34].

If we were to adapt this attack to the black-box scenario where
the adversary has no direct access to the training data or training
parameters of the model, the attacker would first need to infer the
parameters of the model and subsequently use their estimates to
perform the poisoning attack. Though more difficult to execute,
black-box attacks allow better transferability of poisoning attacks
against different training sets, as shown in [34] and [28].

3.2.3  Attack Evaluation Metric. In this research, the effect of poi-
soning the LIS is measured with respect to the mean lookup time in
nanoseconds. To measure the performance impact of the poisoning
attack, we calculate the ratio of the mean lookup time of a model
that is trained on the legitimate data and the mean lookup time of
a model trained on the poisoned data. For completeness, we also
report the mean lookup time (in nanoseconds) across all poisoning
thresholds for all the models considered.

4 TESTING THE ROBUSTNESS OF LEARNED
INDEX STRUCTURES

To test the robustness of learned index structures, we execute a
poisoning attack on linear regression models by attacking the CDF
of the training data. The attack works by inserting a certain number
of poisoning keys into the training dataset with the aim of increasing
the approximation error of the regression and thus deteriorating
the overall performance of the index.

To formulate the poisoning attack, we consider a LIS to consist
of an index that is being constructed on a keyset K of size n, where
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each key k € K has a rank r in the interval [1, n]. Here, r denotes
the position of k in an ordered sequence of K. The objective of the
LIS is to approximate the rank of the queried key by constructing a
regression model on (k, r), where the X-value is given by the key
k, and the Y-value is denoted by the rank r. In other words, the
function that the regression model approximates is the CDF of the
input dataset.

Prior work on poisoning attacks on linear regression models was
aimed at inserting maliciously-crafted poisoning keys that cause
a “local change”, i.e., inserting keys that do not affect the X- and
Y-values of the legitimate points [18]. In the case of LIS models, the
insertion of a single, maliciously-crafted key k;, will cause a shift in
the rank of all keys larger than k. This change will in turn trigger
a shift of the CDF, thus compounding the effect of the adversarial
insertion.

To this date, the “compounding effect of adversarial insertion”
has only been studied by the authors of [20], where they intro-
duced a novel poisoning attack for linear regression on CDFs called
GreedyPoisoningRegressionCDF. We follow their approach and de-
scribe the poisoning strategy of an adversary targeting linear regres-
sion models on CDFs in Definition 4.1. The parameter A denotes
the upper bound that limits the size of the poisoning keyset P
and is chosen to be proportional to the size of the keyset. In the
experiments described in Section 5.1, A was set to a range of val-
ues between A = 0.01n and A = 0.20n. For further details on the
poisoning algorithm, the interested reader is referred to [20].

Definition 4.1 (Poisoning Linear Regression on CDF). Let K
be the set of n integers that correspond to the keys and let P
be the set of p integers that comprise the poisoning keys. The
augmented set on which the linear regression model is trained
is {(k;, 1), (kg,r3), -+, (k},,r7,)}, where k] € KU P and r] €
[1,n + p]. The goal of the adversary is to choose a set P of size at
most A so as to maximize the loss function of the augmented set
KUP:

argmaxp g ¢ |p|<a (r;lian ({k{, riyPa, b))

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup

To test the robustness of learned index structures, we set-up a flexi-
ble microbenchmark that allows us to quickly test the robustness
of learned index structures against data poisoning attacks. The
microbenchmark is based on the source code that was published by
Eppert et al. [9]. We have extended the existing microbenchmark
by implementing the CDF poisoning attack against different types
of regression models and the learned index implementations ALEX
and PGM-Index. The corresponding source code used in this work
is available online.!

The system architecture that we used for our experiments is
shown in Figure 1. To simulate database workload, we have first
generated a synthetic dataset consisting of 1000 keys. We subse-
quently executed the poisoning attack against the synthetic dataset
while varying the poisoning threshold parameter from p = 0.01

Ihttps://github.com/Bachfischer/LogarithmicErrorRegression
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Figure 1: Benchmarking architecture used for experiments.

to p = 0.20. For each poisoning threshold, we obtained the corre-
sponding set of poisoning keys and used the legitimate and poisoned
keysets to measure the mean lookup time of the indexes on the
legitimate (non-poisoned) dataset and the mean lookup time on the
poisoned dataset.

To test the robustness of learned index structures, we focused on
LIS models that approximate the CDF via PLA and whose source
code is available as open-source. We have therefore decided to
include ALEX, PGM-Index, and the regression models? discussed
in [9] into our benchmark. Additional details on the indexes are
provided in Table 2.

Method Description Parameters  Source
Regressions (SLR etc.)  [9] - [10]
ALEX [7] - [26]
PGM-Index [11] max. error € [12]

Table 2: Overview of evaluated indexes.

5.2 Experimental Results

Figure 2 shows the results of the experiments. The performance
deterioration of the LIS is calculated as the ratio between the mean
lookup time in nanoseconds for the poisoned datasets and the mean
lookup time for the legitimate (non-poisoned) dataset.

From the graphs, we can observe that simple linear regression
(SLR) is particularly prone to the poisoning attack, as this regression
model shows a steep increase in the mean lookup time when evalu-
ated on the poisoned data. The performance of the competitors that
optimize a different error function such as LogTE, DLogTE and 2P
are more robust against adversarial attacks. For these regression
models, the mean lookup time remains relatively stable even when
the poisoning threshold is increased substantially.

Because SLR is the de-facto standard in learned index struc-
tures and used internally by the ALEX and the PGM-Index imple-
mentations, we would expect that these two models also exhibit a
relatively high performance deterioration when evaluated on the
poisoned dataset. Surprisingly, ALEX does not show any signifi-
cant performance impact. This is most likely due to the usage of
gapped arrays that allows the model to easily capture outliers in
the data (up to a certain point). The performance of the PGM-Index
deteriorates by a factor of up-to 1.3x.

2Regression models: SLR, LogTE, DLogTE, 2P, TheilSen, and LAD
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Figure 2: Performance deterioration of LIS models under poisoning attacks.
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For further analysis, we have also calculated the overall mean
lookup time for the evaluated learned indexes, averaged across all
experiments. The results are shown in Figure 3. From Figure 3, we
can observe that ALEX dominates all learned index structures. The
performance of the regression models SLR, LogTE, DLogTE, 2P,
TheilSen and LAD is also relatively similar, in a range between 30 -
40 nanoseconds, while the PGM-Index performs worst with a mean
lookup time of > 50 nanoseconds.

6 CONCLUSIONS AND FUTURE OUTLOOK

In this research, we have tested the robustness of a variety of re-
gression models as well as two learned index implementations
ALEX and PGM-Index against adversarial workload. To simulate
adversarial workload, we have executed a poisoning attack on a
synthetic dataset consisting of 1000 keys. To evaluate the success of
the poisoning attack, we measured the performance deterioration
of the lookup time for various indexes. The results show that LIS
models are prone to poisoning attacks and exhibit significantly
worse performance after only a small subset of poisoning keys is
introduced into the keysets.

The experiments described in this research focused exclusively
on poisoning models that try to approximate the CDF via linear
regression. Recent publications have introduced other models for
constructing a LIS such as polynomial interpolation [31] and loga-
rithmic error regression [9]. These novel model architectures would
also provide an interesting target for poisoning attacks. While the
poisoning attack used in this paper works by introducing poisoning
keys prior to training the index models, future research may inves-
tigate how an adversary could leverage the update functionality of
dynamic learned index models to insert and remove keys from a
trained LIS model during runtime to deteriorate the fit of the LIS.
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