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Traditional DB indexes use tree data structures to find record 
on disk – learned indexes uses ML models to “predict” location

Traditional database indexes Learned Index Structures (LIS)

Type: 

Complexity: 

B-Tree (and variantes)
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Linear regression (and variantes)
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A learned index structure works by approximating the CDF of 
the data to predict the location of the query key
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This research has evaluated three index implementations: Two 
learned index structures (ALEX & D-PGM) and one B+Tree

ALEX Dynamic-PGM B+Tree

Authors: Ding et al. (2019) Ferragina et al. (2020) Timo Bingmann (2007)

Code: https://github.com/microsoft/ALEX https://github.com/gvinciguerra/PGM-index https://github.com/bingmann/stx-btree

Paper: ALEX: an updatable adaptive learned 
index

The PGM-index: a fully-dynamic 
compressed learned index with provable 
worst-case bounds

STX B+ Tree C++ Template Classes v0.9

Model: Piecewise Linear Approximation (PLA) Piecewise Linear Approximation (PLA) None
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Adversarial Machine Learning is the study of ML techniques 
against an adversarial opponents aiming to fool the model

Availability

Training data

Poisoning to allow subsequent 
intrusions

(a.k.a. backdoors or neural network 
trojans)

Poisoning to maximize 
classification error

(a.k.a. worst-case behavior)

n/a

Evasion 
(a.k.a. adversarial examples)

n/a

Model extraction / stealing 
and model inversion 
(a.k.a. hill-climbing attacks)

Integrity Privacy / Confidentiality

Test data

At
ta

ck
er
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ap

ab
ili

ty

Querying strategies that reveal secret 
information of the model or its users

Misclassifications that compromise 
normal system operation

Misclassifications that do not 
compromise normal system operation

Attacker goals

Focus of this work

Source: Biggio, B. and F. Roli (2018). Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition 84: 317-331.
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To study the performance of learned indexes under adversarial 
workload, we execute a poisoning attack against the CDF

Poisoning threshold p = 20% (400 keys)
Mean Squared Error (MSE): 8675.83Mean Squared Error (MSE): 22.99

1. Dataset before poisoning attack: 2. Dataset after poisoning attack:
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Distributed poisoning algorithm deliberately places poisoning 
keys in dense areas to exacerbate the non-linearity of the CDF

Algorithm: GreedyPoisoningRegressionCDF1

(based on Kornaropoulos et al.)

1) Kornaropoulos, E. M., et al. (2020). The Price of Tailoring the Index to Your Data: Poisoning Attacks on Learned Index Structures.

Algorithm: GreedyDistributedPoisoningRegressionCDF
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Data pipeline extends existing open-source tools from learned 
indexes research community

Poisoning algorithmDatasets 
(200M uint64 keys)

Non-poisoning (Baseline)

SOSD Benchmark Experimental Results
(4 workloads)

books

fb

osmc

wiki Poisoning keys 
added here

ALEX B+ Tree Dynamic
PGM

Read-only - 20M lookups

Read-heavy - 18M lookups, 2M inserts

Write-heavy - 2M lookups, 18M inserts

Write-only - 20M inserts

Google Compute 
Engine
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Key distribution of SOSD benchmark datasets varies heavily in 
terms of their cumulative distribution function

books_200M_uint64 osm_cellids_200M_uint64fb_200M_uint64 wiki_ts_200M_uint64

Contents:

Data:

Size:

Book popularity on Amazon Cell IDs on Open Street MapFacebook user IDs Wikipedia edit timestamps

200M uint64 keys 200M uint64 keys200M uint64 keys 200M uint64 keys

1.53 GB 1.53 GB1.53 GB 1.53 GB
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Poisoning attack was scaled to target up to 200M keys by 
exploiting the power of a very large virtual machine

200M legitimate keys 
(full dataset)

1

4

3

2

.  .  .

25

25x 80M legitimate keys 
(data chunks)

25x 80M legitimate keys +
25 x 800 poisoning keys 

200M legitimate keys +
20k poisoning keys

1

4

3

2

.  .  .

25

VM instance c2-standard-30 
(30 vCPUs, 120 GB RAM)

2 31 4 5

Note: Poisoning attack was executed on a c2-standard-30 VM instance running on Google Compute Cloud (30 vCPUs, 120GB RAM).

Poisoning threshold:
p=0.0001 
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Final results from poisoned and non-poisoned workload 
scenarios with poisoning percentage p=0.0001 (I/II)

Non-poisoned scenario: Poisoned scenario: Performance impact:

1. 
Read-only 
workload

20M lookups

2. 
Read-heavy 
workload

18M lookups, 
2M inserts

Note: All datasets in this experiment consist of 200M uint64 keys. The benchmark was evaluated on a e2-standard-8 VM instance running on Google Compute Cloud (8 vCPUs, 32GB RAM). For each index, multiple configurations were tested..
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Final results from poisoned and non-poisoned workload 
scenarios with poisoning percentage p=0.0001 (II/II)

3. 
Write-heavy 
workload

2M lookups, 
18M inserts

4. 
Write-only 
workload

20M inserts

Note: All datasets in this experiment consist of 200M uint64 keys. The benchmark was evaluated on a e2-standard-8 VM instance running on Google Compute Cloud (8 vCPUs, 32GB RAM). For each index, multiple configurations were tested.

Non-poisoned scenario: Poisoned scenario: Performance impact:
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Research has shown that “adversarial workload matters”: Up to 
20% performance deterioration observed in learned indexes

Recommendations
§ Various approaches for defending against poisoning attacks on 

linear regression (TRIM1, LID2), but not directly applicable
§ In LIS, the rank for each key depends on value of all other keys 

(mitigations needs to iteratively re-calibrate!)
§ Removal of poisoning keys often difficult (concentrated around 

legitimate keys)

1

2

3

Limitations
§ Poisoning attack executed with poisoning threshold of p = 0.0001 

due to computational constraints (vs. p = 0.01 to p = 0.2)
§ Experiments performed on Virtual Machine instance (e2-standard-

8), thus sensitive to I/O demand on physical host

Future Directions
§ Assess other models for constructing learned index structures, such 

as polynomial interpolation3 or logarithmic error regression4

§ Leverage the update functionality of LIS to insert / delete keys at 
runtime 

1

3
2

1) Jagielski, M., et al. (2018). Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. 2018 IEEE Symposium on Security and Privacy (SP), IEEE
2) Weerasinghe, S., et al. (2020). Defending regression learners against poisoning attacks. arXiv preprint arXiv:2008.09279.
3) Setiawan, N. F., et al. (2020). Function interpolation for learned index structures. Australasian Database Conference, Springer.
4) Eppert, M., et al. (2021). A Tailored Regression for Learned Indexes: Logarithmic Error Regression. Fourth Workshop in Exploiting AI Techniques for Data Management.


