
Adversarial Workload Matters
Executing a Large-Scale Poisoning Attack against Learned Index
Structures

Matthias Bachfischer (Student ID: 1133751)
Melbourne, October 18th 2021

2

Conclusion6

Experimental Results5

Experimental Setup4

Poisoning Attacks on Learned Index Structures3

Background on Adversarial ML2

Introduction1

Agenda

3

Conclusion6

Experimental Results5

Experimental Setup4

Poisoning Attacks on Learned Index Structures3

Background on Adversarial ML2

Introduction1

Agenda

4

Traditional DB indexes use tree data structures to find record
on disk – learned indexes uses ML models to “predict” location

Traditional database indexes Learned Index Structures (LIS)

Type:

Complexity:

B-Tree (and variantes)

Ο(𝑙𝑜𝑔!𝑛)

Type:

Complexity:

Linear regression (and variantes)

Ο(1)

Key
(e.g., student “George”)

A- B- C-
B C D

…

AA- AL- AK-
AL AK AP

… BA- BI- BL-
BE BL BR

… … … … …
….

… … … … … … … … … … … … … … … … … … … … … … … …
…. ….

Key
(e.g., student “George”)

Model

5

A learned index structure works by approximating the CDF of
the data to predict the location of the query key

Frequency Distribution

Cumulative Distribution
Function (CDF)

of

 st
ud

en
ts

Names (ordered A-Z)

Pr
ob

ab
ilit

y

0

1

P(X<George) * N Names (ordered A-Z)

Students
Amanda
Amy

Andrew
Andrew
Anna
Anna
Ashley
Barbara
Betty
Brenda
Brian
Carol
Carol

Christopher
Daniel
Daniel
David

Elizabeth
Emily
Eric
Gary

George

…
Susan

Thomas

Wiliam

Zamantha

6

This research has evaluated three index implementations: Two
learned index structures (ALEX & D-PGM) and one B+Tree

ALEX Dynamic-PGM B+Tree

Authors: Ding et al. (2019) Ferragina et al. (2020) Timo Bingmann (2007)

Code: https://github.com/microsoft/ALEX https://github.com/gvinciguerra/PGM-index https://github.com/bingmann/stx-btree

Paper: ALEX: an updatable adaptive learned
index

The PGM-index: a fully-dynamic
compressed learned index with provable
worst-case bounds

STX B+ Tree C++ Template Classes v0.9

Model: Piecewise Linear Approximation (PLA) Piecewise Linear Approximation (PLA) None

Key
(e.g., student “George”)

A- B- C-
B C D

…

AA- AL- AK-
AL AK AP…

BA- BI- BL-
BE BL BR… … … … …

….

… … … … … … … … … … … …… … … … … … … …… … … …
…. ….

https://github.com/microsoft/ALEX
https://github.com/gvinciguerra/PGM-index
https://github.com/bingmann/stx-btree

7

Conclusion6

Experimental Results5

Experimental Setup4

Poisoning Attacks on Learned Index Structures3

Background on Adversarial ML2

Introduction1

Agenda

8

Adversarial Machine Learning is the study of ML techniques
against an adversarial opponents aiming to fool the model

Availability

Training data

Poisoning to allow subsequent
intrusions

(a.k.a. backdoors or neural network
trojans)

Poisoning to maximize
classification error

(a.k.a. worst-case behavior)

n/a

Evasion
(a.k.a. adversarial examples)

n/a

Model extraction / stealing
and model inversion
(a.k.a. hill-climbing attacks)

Integrity Privacy / Confidentiality

Test data

At
ta

ck
er

 c
ap

ab
ili

ty

Querying strategies that reveal secret
information of the model or its users

Misclassifications that compromise
normal system operation

Misclassifications that do not
compromise normal system operation

Attacker goals

Focus of this work

Source: Biggio, B. and F. Roli (2018). Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition 84: 317-331.

9

Conclusion6

Experimental Results5

Experimental Setup4

Poisoning Attacks on Learned Index Structures3

Background on Adversarial ML2

Introduction1

Agenda

10

To study the performance of learned indexes under adversarial
workload, we execute a poisoning attack against the CDF

Poisoning threshold p = 20% (400 keys)
Mean Squared Error (MSE): 8675.83Mean Squared Error (MSE): 22.99

1. Dataset before poisoning attack: 2. Dataset after poisoning attack:

11

Distributed poisoning algorithm deliberately places poisoning
keys in dense areas to exacerbate the non-linearity of the CDF

Algorithm: GreedyPoisoningRegressionCDF1

(based on Kornaropoulos et al.)

1) Kornaropoulos, E. M., et al. (2020). The Price of Tailoring the Index to Your Data: Poisoning Attacks on Learned Index Structures.

Algorithm: GreedyDistributedPoisoningRegressionCDF

12

Conclusion6

Experimental Results5

Experimental Setup4

Poisoning Attacks on Learned Index Structures3

Background on Adversarial ML2

Introduction1

Agenda

13

Data pipeline extends existing open-source tools from learned
indexes research community

Poisoning algorithmDatasets
(200M uint64 keys)

Non-poisoning (Baseline)

SOSD Benchmark Experimental Results
(4 workloads)

books

fb

osmc

wiki Poisoning keys
added here

ALEX B+ Tree Dynamic
PGM

Read-only - 20M lookups

Read-heavy - 18M lookups, 2M inserts

Write-heavy - 2M lookups, 18M inserts

Write-only - 20M inserts

Google Compute
Engine

14

Key distribution of SOSD benchmark datasets varies heavily in
terms of their cumulative distribution function

books_200M_uint64 osm_cellids_200M_uint64fb_200M_uint64 wiki_ts_200M_uint64

Contents:

Data:

Size:

Book popularity on Amazon Cell IDs on Open Street MapFacebook user IDs Wikipedia edit timestamps

200M uint64 keys 200M uint64 keys200M uint64 keys 200M uint64 keys

1.53 GB 1.53 GB1.53 GB 1.53 GB

15

Poisoning attack was scaled to target up to 200M keys by
exploiting the power of a very large virtual machine

200M legitimate keys
(full dataset)

1

4

3

2

. . .

25

25x 80M legitimate keys
(data chunks)

25x 80M legitimate keys +
25 x 800 poisoning keys

200M legitimate keys +
20k poisoning keys

1

4

3

2

. . .

25

VM instance c2-standard-30
(30 vCPUs, 120 GB RAM)

2 31 4 5

Note: Poisoning attack was executed on a c2-standard-30 VM instance running on Google Compute Cloud (30 vCPUs, 120GB RAM).

Poisoning threshold:
p=0.0001

16

Conclusion6

Experimental Results5

Experimental Setup4

Poisoning Attacks on Learned Index Structures3

Background on Adversarial ML2

Introduction1

Agenda

17

Final results from poisoned and non-poisoned workload
scenarios with poisoning percentage p=0.0001 (I/II)

Non-poisoned scenario: Poisoned scenario: Performance impact:

1.
Read-only
workload

20M lookups

2.
Read-heavy
workload

18M lookups,
2M inserts

Note: All datasets in this experiment consist of 200M uint64 keys. The benchmark was evaluated on a e2-standard-8 VM instance running on Google Compute Cloud (8 vCPUs, 32GB RAM). For each index, multiple configurations were tested..

18

Final results from poisoned and non-poisoned workload
scenarios with poisoning percentage p=0.0001 (II/II)

3.
Write-heavy
workload

2M lookups,
18M inserts

4.
Write-only
workload

20M inserts

Note: All datasets in this experiment consist of 200M uint64 keys. The benchmark was evaluated on a e2-standard-8 VM instance running on Google Compute Cloud (8 vCPUs, 32GB RAM). For each index, multiple configurations were tested.

Non-poisoned scenario: Poisoned scenario: Performance impact:

19

Conclusion6

Experimental Results5

Experimental Setup4

Poisoning Attacks on Learned Index Structures3

Background on Adversarial ML2

Introduction1

Agenda

20

Research has shown that “adversarial workload matters”: Up to
20% performance deterioration observed in learned indexes

Recommendations
§ Various approaches for defending against poisoning attacks on

linear regression (TRIM1, LID2), but not directly applicable
§ In LIS, the rank for each key depends on value of all other keys

(mitigations needs to iteratively re-calibrate!)
§ Removal of poisoning keys often difficult (concentrated around

legitimate keys)

1

2

3

Limitations
§ Poisoning attack executed with poisoning threshold of p = 0.0001

due to computational constraints (vs. p = 0.01 to p = 0.2)
§ Experiments performed on Virtual Machine instance (e2-standard-

8), thus sensitive to I/O demand on physical host

Future Directions
§ Assess other models for constructing learned index structures, such

as polynomial interpolation3 or logarithmic error regression4

§ Leverage the update functionality of LIS to insert / delete keys at
runtime

1

3
2

1) Jagielski, M., et al. (2018). Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. 2018 IEEE Symposium on Security and Privacy (SP), IEEE
2) Weerasinghe, S., et al. (2020). Defending regression learners against poisoning attacks. arXiv preprint arXiv:2008.09279.
3) Setiawan, N. F., et al. (2020). Function interpolation for learned index structures. Australasian Database Conference, Springer.
4) Eppert, M., et al. (2021). A Tailored Regression for Learned Indexes: Logarithmic Error Regression. Fourth Workshop in Exploiting AI Techniques for Data Management.

