
Master Thesis
Adversarial Workload Matters: Executing a Large-Scale Poisoning Attack against Learned
Index Structures

submitted by: Matthias Bach�scher
Student ID: 1133751
Course: Master of Data Science
The University of Melbourne

supervised by: Benjamin I. P. Rubinstein
The University of Melbourne

Renata Borovica-Gajic
The University of Melbourne

Melbourne, the 1st of November 2021

Declaration of Truthfulness

1. I certify that this report does not incorporate without acknowledgement any material
previously submitted for a degree or diploma in any university; and that to the best of my
knowledge and belief it does not contain any material previously published or written by
another person where due reference is not made in the text.

2. The report is 8000 words in length (excluding text in images, tables, bibliographies and
appendices).

Melbourne, the 1st of November 2021

Matthias Bach�scher

I

Abstract

Databases rely on indexes to quickly locate and retrieve data that is stored on disks. While
traditional database indexes use tree data structures such as B+ Trees to �nd the position of a
given query key in the index, a learned index structure considers this problem as a prediction task
and uses a machine learning model to “predict” the position of the query key. This novel approach
of implementing database indexes has inspired a surge of recent research aimed at studying the
e�ectiveness of learned index structures. However, while the main advantage of learned index
structures is their ability to adjust to the data via their underlying ML model, this also carries the
risk of exploitation by a malicious adversary.

In this work, the results from executing a large-scale poisoning attack on dynamic learned index
structures are presented. The poisoning attack used in this research targets linear regression
models and works by manipulating the cumulative distribution function (CDF) on which the
model is trained. The attack deteriorates the �t of the underlying ML model by injecting a set of
poisoning keys into the dataset, which leads to an increase in the prediction error of the model
and thus deteriorates the overall performance of the learned index structure.

The e�ectiveness of the poisoning attack described in this research is evaluated against three
index implementations by measuring their throughput in million operations per second. The
evaluated indexes consist of two learned index structures ALEX and Dynamic-PGM as well as
a traditional B+ tree. For each index, its performance on a variety of real-world datasets and
workload scenarios is measured. The experimental results show that learned index structures
can exhibit a performance deterioration of up to 20% when evaluated on the poisoned vs. non-
poisoned datasets. Contrary to that, the B+ tree does not exhibit any performance deterioration
when evaluated on the poisoned datasets. This shows that learned index structures are not robust
to adversarial workload and can be manipulated by an adversary to achieve signi�cant slow-down
compared to traditional data structures.

II

Contents

1 Introduction 3

2 Related Work 5
2.1 Learned Index Structures . 5

2.1.1 Static Learned Index Structures . 5
2.1.2 Dynamic Learned Index Structures . 7
2.1.3 Discussion . 9

2.2 Adversarial Machine Learning . 10
2.2.1 Poisoning Attacks in Adversarial ML . 10
2.2.2 Poisoning Attacks on Learned Index Structures 11

3 Preliminaries 12
3.1 Terminology . 12
3.2 Background on Poisoning Attacks . 12
3.3 Adversarial Model . 12

3.3.1 Adversary’s Goals . 13
3.3.2 Adversary’s Capabilities & Knowledge 13
3.3.3 Attack Evaluation Metric . 14

4 Poisoning Attacks on Dynamic Learned Index Structures 15
4.1 Poisoning of Learned Index Structures by Manipulating the CDF 15
4.2 Poisoning of Learned Index Structures by Introducing Outlier Keys 16

5 Poisoning of Linear Regression Models by Manipulating the CDF 17
5.1 Theoretical Setup . 17
5.2 Linear Regression Models on CDF . 17
5.3 Poisoning Attacks on CDFs . 18

5.3.1 The E�ect of Poisoning on CDF . 19
5.3.2 GreedyPoisoningRegressionCDF Algorithm 19
5.3.3 GreedyDistributedPoisoningRegressionCDF Algorithm 20

6 Evaluation 22
6.1 Experimental Setup . 22

6.1.1 Evaluated Indexes . 23
6.1.2 Workloads . 24
6.1.3 Datasets . 24

6.2 Experimental Results . 25

7 Discussion 27
7.1 Limitations . 27
7.2 Recommendations . 27

1

7.3 Future Directions . 28

8 Conclusion 29

List of Figures 30

List of Tables 31

Acronyms 32

Bibliography 32

Appendices 36

A Experimental Results 37
A.1 Non-poisoned scenario . 37
A.2 Poisoned scenario . 38

2

Chapter

1
Introduction

A database index is a data structure that is widely used in databases to organize data for fast
retrieval. Using an index allows the database to quickly locate the data without having to �rst
search through all entries in the database each time a speci�c record needs to be retrieved.

In traditional database design, tree-based data structures such as B+ trees and its variants have seen
wide adoption due to their relative ease of implementation and optimal worst-case guarantees in
terms of algorithmic complexity. A B+ tree is self-balancing data structure that maintains the data
in a sorted format and allows searches, insertions, and deletions with constant time complexity
O(log n) (where n is the total number of elements in the B+ tree). It is a general-purpose data
structure that makes no prior assumptions about the data distribution and does not take advantage
of any patterns that might be speci�c to the data that it stores.

In practice, real-world data often follows some underlying pattern that, if modeled correctly,
could signi�cantly speed-up the data retrieval process. For example, given a set of continuous
integer keys (keys from 1 to 100 million), one would not construct a conventional B+ tree index
over the keys. Instead, the key itself could be used as an o�set for the index, thus reducing
the time required to look-up any key in the dataset from O(log n) to O(1). This increase in
performance is what Kraska et al. hoped to achieve when they �rst introduced their work on
Learned Index Structure (LIS) models [1]. Even though the concept of a LIS is relatively novel,
it has already led to a surge of results that leverage ideas from Machine Learning (ML), data
structures, and database systems [2], [3], [4], [5], [6], [7], [8], [9], [10],[11], [12], [13], [14], [15],
[16].

The core idea of a LIS is to model the functionality of a data structure as a prediction task, i.e.
given an input key, the objective of the LIS is to predict the key’s position in a sorted collection of
key-value pairs. This approach allows the use of continuous functions to encode the data and
leverage learning algorithms to approximate the function. Speci�cally, the approach proposed by
Kraska et al. [1] is to approximate the Cumulative Distribution Function (CDF) of the keys. Given
a key k as an input, the CDF returns the probability that the chosen key takes a value less than or
equal to k (i.e. P(X  Key k)).

Based on this observation, one can use the CDF to:

(1) compute the number of keys less than the (queried) key k and

(2) infer the key’s memory location (assuming the keys were sorted during the initialization).

In the context of learned indexes, the term CDF is frequently used synonymously to describe a
mapping from a key to its position in the sorted array. This is contrary to the statistical de�nition

3

of the CDF as the probability that a random variable will take a value less than or equal to a
given key. This work uses the former interpretation of the CDF as a mapping from the key to its
position in an sorted array.

Figure 1: Learned index as a CDF [1]

Figure 1 shows that the CDF primarily describes a local linear regression problem that is monotonic
increasing in the covariate (the key). The CDF gives an approximate location - that it sums to one
is not strictly required for this scenario. Furthermore, in order to model larger datasets, multiple
local linear regression models may be used to describe di�erent parts of the CDF.

In the work of Kraska et al. [1], a linear regression on the CDF is one of the essential building blocks
that has been shown toworkwell and can be combinedwith hierarchical Recursive Model Index (RMI)
structures to balance the resulting model with respect to latency, memory usage, and compu-
tational cost. Using linear regression to construct a LIS is bene�cial, because it only requires
the storage of relatively small number of parameters (slope a and intercept b) and performing
prediction only involves basic operations for multiplication and addition.

The hierarchy of the LIS provides great �exibility because it represents a “mixture of experts”,
where each expert is responsible for subsets of the data. As an example, the upper levels of the
hierarchy can be a model that approximates well the general shape of the function (e.g., a neural
network model), while the next level consists of fast and low-memory models which are able to
capture the local structure well (e.g., linear regression model).

4

Chapter

2
Related Work

2.1 Learned Index Structures

2.1.1 Static Learned Index Structures

Since the �rst published work on learned index structures by Kraska et al. [1], the research
community has explored a variety of ideas on how LIS could be used as a replacement for
traditional index structures such as B+ trees. In the following sections, an overview of the most
prominent LIS models and their core characteristics is given.

Recursive Model Indexes (RMI)

Figure 2: A multi-staged RMI model [1].

The RMI model was initially presented by Kraska et. al in [1] and has since then ignited the recent
surge of research in the area of learned index models. The RMI uses a hierarchy of ML models
that are organized as a Directed Acyclic Graph (DAG). It is trained to learn the input distribution
of the pairs (k, rank(k)) for all k 2 K, with K denoting the underlying keyset. At query time, each
model (starting from the top one) takes the query key k as input and picks the following model
in the DAG that is “responsible” for that key (as shown in Figure 2). The output of the RMI is
the approximate position of the key returned by the last queried ML model. A binary search is
subsequently executed within a range of neighbouring positions of the predicted position, with
the size of the binary search range depending on the prediction error of the RMI.

In the case of a two-stage RMI, a function F is trained on N data points (key, index) pairs. The
RMI F is composed of a single �rst-stage model f1, and B second-stage models f

i

2 where the value
B denotes the “branching factor’” of the RMI.

5

Formally, the two-stage RMI is de�ned as

F(x) = f
bB⇥ f1(x)/Nc
2 (k) (2.1)

and uses the stage-one model f1(x) to compute an approximation of the CDF of the input key
k. Next, this approximated key position is scaled to a range between 0 and the branching factor
B. The scaled value is used to select a model from the second stage f

i

2(k) which is then used
to produce the �nal approximation. In the RMI, the �rst-stage model f1(k) can be thought of
as partitioning the data into B buckets, and each second-stage model f

i

2(k) is responsible for
approximating the CDF of only the keys that fall into the i-th bucket.

One could assume that ML models cannot provide the guarantees ensured by traditional indexes,
both because they can fail to learn the distribution and because they can be expensive to evaluate.
However, in the experiments performed by [1], the RMI dominated the B+ Tree and was up to
1.5-3⇥ faster while requiring two orders of magnitude less storage space.

Radix Spline Indexes (RS)

0 1 2 3 4 5 6 7

Key

In
d
e
x

4718310
1011 1000 0100 11112

Lookup key:

Radix table

Spline point

CDF

Pointer

Figure 3: A Radix Spline index [13].

The Radix Spline (RS) index is another LIS introduced in [13]. It consists of a linear spline that
approximates the CDF of the data and a radix table that indexes the spline points. The RS is built
from the data in a bottom-up fashion and can be constructed in a single pass with a constant
worst-case cost per element.

Figure 3 shows that the radix table indexes r-bit pre�xes of the spline points and serves as an
approximate index to accelerate binary searches over the spline points. Internally, it is represented
as an array containing 2r o�sets into the sorted array of spline points. The spline points themselves
are represented as (key, index) pairs. To locate a key in a spline segment, linear interpolation
between the two spline points is used.

Piecewise Geometric Model Indexes (PGM)

The Piecewise Geometric Model (PGM)-Index [12] is a multi-level structure, where each level rep-
resents a Piecewise Linear Approximation (PLA) bounded by an error ✏.

Figure 4 depicts the construction of an example PGM-Index. In the �rst level, the data is partitioned
into three segments, each segment represented by a simple linear model (f1, f2, f3). Each of the

6

Figure 4: A PGM index [12].

linear models is responsible for modeling the CDF of the keys in their corresponding segments
within a preset error bound ✏. In the next level, the partition boundaries of the �rst level models
are treated as their own sorted dataset, and another error-bounded piecewise linear regression is
computed. This is repeated until the top level of the PGM becomes su�ciently small.

Formally, the PLA of the PGM-Index computes a piecewise linear regression and partitions the
data into n+ 1 segments with a set of points p0, p1, . . . , pn. The entire piecewise linear regression
is expressed as a piecewise function:

F(x) =

8>>>>>>>>>>><
>>>>>>>>>>>:

a0 ⇥ x + b0 if x < p0

a1 ⇥ x + b1 if x � p0 and x < p1

a2 ⇥ x + b2 if x � p1 and x < p2

. . .

an ⇥ x + bn if x � pn and x < pn

Each regression in the PGM index is constructed with a �xed error bound ✏ and yields in a
regression that can be used as an approximate index.

2.1.2 Dynamic Learned Index Structures

A natural evolution of the static LIS models introduced in the section above is to extend them to
also handle dynamic updates. In 2019, Hadian and Heinis were the �rst to investigate approaches
for building “update-adaptive models” [17] by minimizing the error that the models incur when
inserting and deleting data. Adaptive Learned indEX (ALEX), a LIS published in 2020 [2] was
the �rst open-source LIS implementation that natively supported updates. The PGM-Index
discussed in Section 2.1.1 also supports insert and delete operations via the Dynamic-PGM-Index.
Learned Index with Precise Positions (LIPP) [18] and Cache-cOnscious Learned INdex (COLIN) [19]
(both published in 2021) are the two most recent, updatable data structures and are also brie�y
described below.

7

Figure 5: The design of ALEX [2].

Adaptive Learned indEX (ALEX)

The ALEX design shown in Figure 5 builds on the RMI model published in [1]. However, while
the RMI is of static nature and uses a �xed number of levels and �xed number of models in each
level, ALEX extends the original RMI design with respect to two key improvements.

The �rst major improvement of ALEX is that it allows dynamic updates to the data by using a RMI
model based on PLA. Depending on the workload, ALEX can dynamically adapt the structure
of the RMI to yield a better �t for the data. This is done via linear cost models that predict the
latency of lookup and insert operations based on statistics measured from a RMI.

The second major improvement is that ALEX, similar to a B+ Tree, stores its data at the leaf
level. This means that every leaf node stores an array of keys and payloads, thus allowing the
data structure to grow dynamically while limiting the number of expand and shift operations
that are required. As an improvement over a traditional B+ Tree, ALEX makes use of a special
Gapped Array (GA) layout for the leaf nodes, which allows it to achieve faster insert and lookup
times compared to traditional data structures.

Dynamic Piecewise Geometric Model Indexes (Dynamic PGM)

The Dynamic PGM-Index is another LIS implementation with support for dynamic updates. It
is an extension to the PGM-Index described in Section 2.1.1. In this section, a brief overview of
the core characteristics of the Dynamic PGM-Index for handling updates will be given [12]. The
dynamic PGM-Index is constructed on a series of (static) PGM-Indexes built over sets S 0, ..., S b

which are either empty or have key size 20, 21, ..., 2b, where b = ⇥(log n). When inserting a new
key k into the dynamic PGM-Index, the �rst empty set S i in the data structure is retrieved. In
the next step, a new PGM-Index over the merged set S 0 [S i�1 [{k} is constructed, where the
new, merged set is then used as S i, and the previous sets are emptied. The deletion of a key k is
handled similarly to an insert operation by adding a special tombstone value which indicates the
logical removal of d [20].

8

Updatable Learned Index with Precise Positions (LIPP)

LIPP is the most recent learned index model published by Wu et al. in [18]. Similar to other
learned index implementations, LIPP works by combining a series of models in a recursive layout
where each model is responsible for a certain subset of the data (as shown in Figure 6). To �nd the
correct model for a given key, LIPP uses the Fastest Minimum Con�ict Degree (FMCD) algorithm
that helps to �nd the optimal model.

Figure 6: The structure of LIPP [18].

Cache-cOnscious Learned INdex (COLIN)

COLIN (Cache-cOnscious Learned INdex) [19] is another learned index model that was published
in 2021. It uses a model-based data placement policy and cache-conscious data layout to optimize
the retrieval of data. However, because COLIN is not available as open-source code to the research
community and does not introduce any novel approaches compared to the existing learned indexes,
it was not studied in further detail in this work.

2.1.3 Discussion

From the description of LIS implementations like RMI, RS and PGM-Index, it can be noted that all
indexes work by approximating the CDF of the underlying data. However, all of the learned index
structures di�er in a variety of aspect, most notably (1) the type of model used to approximate
the CDF, (2) whether the index supports updates and (3) whether the implementation is available
as open-source. Table 1 gives an overview of the most prominent static and dynamic LIS models.

The main types of models that are used by learned index structures are the Piecewise Linear
Approximation (PLA) and Linear Spline (LS) model. The PLA model is a variant of the linear
regression model that tries to approximate the CDF of the dataset by diving it into variable-
sized segments. The �rst and last keys of each segment are then used to construct a linear
approximation of the data, resulting in a PLA model. In contrast to that, the LS model �ts the
data by approximating the CDF via linear spline points.

From Table 1, we can observe that the majority of indexes use only a single type of model in
constructing the learned index: linear spline regression for RS and PLA for PGM-Index and ALEX.

9

Index Model Updates Open-Source
RMI Multiple 7 3

RadixSpline LS 7 3

PGM-Index PLA 7 3

ALEX PLA 3 3

Dynamic-PGM-Index PLA 3 3

LIPP PLA 3 3

COLIN PLA 3 7

Table 1: Overview of LIS implementations

The RMI is the only LIS that supports a variety of model types, which gives the RMI a greater
degree of �exibility, but also increases the complexity of tuning the RMI (as shown in [21]).

With respect to dynamic (updatable) learned index structures, there are two key implementations
that are subject to active investigation by the community. One is ALEX, a dynamic learned
index structure that builds on the RMI architecture. The second is the Dynamic-PGM-Index, the
dynamic implementation of the PGM-Index. Both ALEX and PGM-Index use a PLA model (a
variant of linear regression model) and are available as open-source, which makes them an ideal
target for mounting a poisoning attack against LIS models. The unique characteristics of the two
data structures as well as their worst-case complexities is further discussed in Section 4.1.

2.2 Adversarial Machine Learning

2.2.1 Poisoning Attacks in Adversarial ML

The term Adversarial Machine Learning describes the study ofMachine Learning (ML) techniques
against an adversarial opponent that aims at fooling a model by supplying deceptive input.
Adversarial ML has emerged in recent years as a new �eld, mostly driven by new advancements
in computing capabilities [22], [23].

Within Adversarial ML, data poisoning attacks have a long history and have been applied in
a variety of contexts such as poisoning of neural network or recommender systems [24], [25].
To this date, research on data poisoning has mostly been focused on classi�cation and anomaly
detection [26], [27], [28], while adversarial regression has largely remained underrepresented
[29].

In 2015, Xiao et al. �rst introduced a gradient-based optimization framework for linear classi�ers
like Lasso or Ridge Regression [30]. Jagielski et al. [31] have built upon this work and extended
their approach for linear regression while also proposing a defense mechanism against poisoning
attacks called TRIM.

In 2020, another novel attack algorithm on regression learning was proposed by Müller et al.
[32]. It works by manipulating the training dataset in a way that causes maximum disturbance
of the data points. In their experimental evaluation, the authors were able to observe that the
Mean Squared Error (MSE) of the regressor increased by 150 percent after inserting only 2% of

10

poisoned samples.

Poisoning attacks on LIS models di�er signi�cantly from previous attempts of poisoning linear
regression models, because it requires poisoning of the CDF. This is challenging because every
insertion a�ects the values of all points of the dataset. This “compound e�ect of poisoning” is
described further in Section 4.1.

2.2.2 Poisoning Attacks on Learned Index Structures

The study of poisoning attacks on LIS is a new area of research �rst studied by Kornaropoulos et
al. in [33]. In the context of a LIS, the aim of a data poisoning attack is to inject a set of maliciously
crafted data into the models and thus cause inaccurate predictions on the location of legitimate
data.

To investigate whether the performance of learned index structures can be manipulated via
poisoning attacks, the researchers in [33] have proposed two poisoning attacks on the hierarchical
architecture of the RMI model:

(1) as multiple-point poisoning attack on the CDF that �nds the optimal set of poisoning keys
which maximize the poisoning e�ect on the loss function (GreedyPoisoningRegressionCDF)

(2) a poisoning attack for the two-stage RMI model which leverages the multiple-point poison-
ing attack (1) such that it increases the error of the overall model (GreedyPoisoningRMI)

The poisoning attack by Kornaropoulos et al. [33] essentially works by confusing the model so
that it can no longer correctly decide in which of two neighboring second-stage models the key
resides and hence causes the RMI to perform an expensive binary search over a wide range of
keys. Using this approach, the researchers were able to increase the error of the poisoned RMI
model by a factor of up to 300⇥ compared to a non-poisoned model.

11

Chapter

3
Preliminaries

3.1 Terminology

In this thesis, a key is denoted by k and its key universe (range of potential keys) as K , where
|K| = m. The set of all keys of an index is denoted as K ✓ K . The density of a keyset K is
calculated via the ratio |K|/|K| = n/m. Similar to previous work on LIS models, it is assumed
that keys are given as non-negative integer and that the total order of the keyset can always be
derived (similar to the original work on LIS models in [1]). It is further assumed that each key is
associated with a record and that the records are stored in an in-memory array that is sorted with
respect to the key values.

3.2 Background on Poisoning Attacks

This research focuses on poisoning attacks against dynamic LIS models that make use of Piecewise
Linear Approximation (PLA). Let D = {xi, yi}ni=1 denote the data used by a learned index structure,
with x 2 Rd representing the input data vector and y 2 R representing the output variable. In an
ordinary linear regression model, the output is computed via a linear function f (x, a, b) = a

T
x+ b

with parameters a 2 Rd and b 2 R. The parameters a, b are chosen so as to minimize the loss
function L(D, a, b) = 1

n

P
n

i=1(f (xi, a, b) � yi)2, also known as the Mean Squared Error.

To this date, previous work on poisoning attacks have either focused on gradient-based poisoning
attacks or investigated alternatives to analytically solve the optimization problem described above,
for example by using a sampling-based [31] or generative approach [34].

The poisoning attack described in this work takes a di�erent approach: It exploits the structure of
the CDFs to compute the location of the poisoning point that maximizes the error when regressing
on the legitimate keys. It builds upon the GreedyPoisoningRegressionCDF algorithm proposed by
Kornaropoulos et al. [33], which has been signi�cantly extended to allow it to scale to very large
datasets with > 200M keys.

3.3 Adversarial Model

This section described the adversarial model for poisoning attacks against LIS. It is inspired
by previous research on poisoning attacks [35], [22], [31], and consists of a de�nition of the
adversary’s goals, the adversary’s capabilities & knowledge as well as the evaluation metric that
is used to measure the e�ectiveness of the poisoning attack on LIS.

12

3.3.1 Adversary’s Goals

When executing a poisoning attack against a LIS model, the adversary’s goal is to corrupt the
learned index model during the training phase (i.e.,while the index is being constructed), so that
its performance deteriorates during the test phase (i.e., when the index is used to predict the
position of a given key).

Poisoning attacks can be categorized into two main categories: poisoning integrity attacks and
poisoning availability attacks. In poisoning integrity attacks, the adversary tries to cause speci�c
mispredictions on certain datapoints during test time, while in poisoning availability attacks, the
adversary’s goal is to a�ect the prediction results indiscriminately and thereby deteriorate the
overall performance of the model.

The focus of this research is on poisoning availability attacks, where the adversary’s goal is to
deteriorate the perceived performance bene�t of a learning-based data structure compared to
a more traditional, tree-based data structures. Speci�cally, the objective of the adversary is to
generate a small number of poisoning keys that are used to augment the training dataset that
consists of so-called legitimate keys. The assumption is that training a LIS model with both the
poisoning keys and legitimate keys will result in a model whose performance is worse compared
to a LIS model trained on only the legitimate keys.

3.3.2 Adversary’s Capabilities & Knowledge

Data poisoning attacks distinguish between two attack scenarios, depending on the adversary’s
capabilities and knowledge: white-box and black-box poisoning attacks.

In white-box attacks, the attacker is assumed to have full access to the training data, i.e., the keyset
K and the slope and intercept parameters a and b of the linear regression. White-box attacks
have already been executed previously with great success in a variety of settings [36], [26] and
have also proven to work well in the context of LIS models [33].

Contrary to that, black-box attacks assume that the adversary has no direct access to the training
data or training parameters of the model. In this scenario, the adversary �rst needs to infer the
parameters of the model and use his estimates to perform the poisoning attack. Though more
di�cult to execute, black-box attacks allow better transferability of poisoning attacks against
di�erent training sets, as shown in [30] and [25].

The focus of this work is to study white-box poisoning attacks. When performing the poisoning
attack, it is assumed that the attacker is able to inject up to p maliciously-crafted poisoning keys
into the training set prior to training the LIS model. Figure 7 illustrates the execution of the
poisoning attack. The total number of data points in the training set is given by N = n + p, where
n denotes the number of legitimate keys and p the number of poisoning keys in the training data.
Similar to previous work, it is assumed that the adversary is able to control only a tiny fraction of
the training set limited by the poisoning percentage ↵, where ↵ = p/n [31], [30].

To extend the poisoning attack to black-box scenarios in which the adversary only has access
to the underlying data distribution (or another dataset generated from the same source as the
training data), the attacker would �rst need to infer the parameters of the underlying PLA model.
However, because the choice of parameters of the learned index structures is limited and depends
heavily on the speci�c model architecture, it should be relatively easy to infer the parameter

13

Figure 7: Execution of data poisoning attack.

of the models when executing the poisoning attack in a black-box setting. Once the adversary
has successfully estimated the parameters of the LIS model, he can continue with the white-box
poisoning attack as described here.

3.3.3 Attack Evaluation Metric

In the original work on LIS, the performance of the RMI is evaluated by measuring the lookup
time in nanoseconds [1]. Since then, a variety of e�orts have been undertaken to facilitate the
comparison between di�erent learned indexes with respect to their predictive accuracy, lookup
times and index build times [37], [38], [39].

In this research, the e�ect of poisoning the LIS is measured with respect to the throughput in
million operations per second of a LIS model trained on the non-poisoned dataset and a LIS model
trained on the poisoned dataset. The throughput is measured against a variety of workloads further
described in Section 6.1.2. Also, for each workload and dataset, the performance deterioration
between a model trained on the legitimate data and a model trained on the poisoned data is
observed.

14

Chapter

4
PoisoningAttacks onDynamic Learned
Index Structures

4.1 Poisoning of Learned Index Structures by Manipulating the
CDF

Executing a poisoning attack on learned index structures can be based on two potential scenarios:
Poisoning the LIS by manipulating the CDF of the data (this section), and poisoning the LIS by
injecting extreme outlier keys into the dataset (next section).

When a LIS is poisoned by manipulating the CDF, the aim of the attacker is to perturb the
underlying data distribution on which a LIS is trained in such a way that it becomes di�cult to
approximate. As shown in Chapter 2, the majority of LIS models rely on linear regression models
to approximate the CDF [1] [21] and even though more complex approaches like neural networks
or logarithmic error regression have proven to also work well [40], none of those models support
dynamic updates yet. This research therefore focuses on the case of linear regression models.

In linear regression models, an ideal poisoning attack should aim at making the underlying data
distribution of the CDF non-linear, thus deteriorating the �t of the linear regression and increasing
the error of the LIS during key lookup. Although the algorithmic complexity of a LIS can be O(1)
in the ideal case, the worst-case complexity of a LIS may be signi�cantly worse than that. Table 2
shows the worst-case complexity for lookups, inserts and deletes for the three data structures
ALEX, B+ tree and PGM-Index.

ALEX B+ tree PGM-Index
Lookup Complexity O(log N + log m) O(log N) O(log2

N)
Insert Complexity O(log2

N + log m) O(log N) O(log2
N + log N)

Search Range O(m) O(m) O(✏)
N = number of keys, m = maximum size of leaf node, ✏ = error bound in PGM-Index

Table 2: Worst-case complexity for lookups & inserts among dynamic Learned Indexes.

The ALEX data structure [2] uses a PLA based on linear regression when storing records in its
Data Nodes. In the worst-case, a lookup operation in ALEX can cost up to O(log N + log m),
contrary to O(log 1) in the best-case. The PGM-Index [12] is another LIS implementation that
relies on a PLA model. Similar to ALEX, the PLA model in the PGM-Index is used to perform
a mapping between the keys and their approximate positions in the sorted array. Because the

15

dynamic version of the PGM-Index works by separating the keys into subsets with di�erent sizes
and building individual PGM indexes over those subsets, its’ worst-case lookup performance is
O(log2

N), compared to O(log 1) in the best-case.

Given this context, it should be noted that tree-based data structures like B+ trees do not rely on
modeling the CDF, but instead rely on the key value to retrieve the data from the tree. Therefore,
the B+ tree data structure and its variants should not be vulnerable to a poisoning attack on the
CDF.

4.2 Poisoning of Learned Index Structures by IntroducingOutlier
Keys

Another approach to poison the LIS is to introduce extreme outlier keys that exploit the internal
structure of the LIS implementation to deteriorate the performance. Because such an attack would
be trivial to detect and rectify by simply scanning the keyset for extreme outliers, it has not been
investigated in-depth as part of this research.

However, while performing some experiments related to the CDF poisoning approach described
in Section 4.1, the author of this work observed that the ALEX implementation by Microsoft [41]
exhibits very poor performance in the presence of extreme outlier keys. This is likely caused by
the fact that introducing extreme outlier keys in the dataset will result in ALEX’s key domain
and tree depth to become unnecessarily large. In some circumstances, this can lead to a crash of
ALEX. Figure 8 shows the insertion of several uint64 keys with key value 264 � 1, which triggers
a crash with error message std::bad_alloc.

Figure 8: Introducing extreme outlier keys can
trigger a crash in ALEXwith < 10 poisoning keys.

A potential poisoning attack deliberately tar-
geting the ALEX implementation could exploit
this condition by introducing extreme outlier
keys during the poisoning process. A potential
mitigations for this attack would be to add spe-
cial logic for handling extreme outliers, or to
have a modeling strategy that is more robust
to sparse key spaces.

16

Chapter

5
Poisoning of Linear Regression Mod-
els by Manipulating the CDF

5.1 Theoretical Setup

This section describes the theoretical setup for a poisoning attack on linear regression models
by attacking the CDF of the training data. The attack works by inserting a certain number of
poisoning keys into the training dataset with the aim of increasing the approximation error of
the regression and thus deteriorate the overall performance of the index. The attack is based on
the observation that LIS models like RMI or ALEX work by approximating the relative order of a
key-value pair, where the value denotes the rank of the queried key. If the predicted approximation
of the rank is accurate, it allows the LIS to directly retrieve the key-value pair from memory
without having to perform searches on the rest of the data (assuming that the key-value pairs are
stored in ordered manner).

A LIS consists of an index that is being constructed on a keyset K of size n, where each key k 2 K

has a rank r in the interval [1, n]. Here, r denotes the position of k in an ordered sequence of K.
The objective of the LIS is to approximate the rank of the queried key by constructing a regression
model on (k, r), where the X-value is given by the key k, and the Y-value is denoted by the rank
r. In other words, the function that the regression model approximates is the CDF of the input
dataset.

Prior work on poisoning attacks on linear regression models was aimed at inserting maliciously-
crafted poisoning keys that cause a “local change”, i.e., inserting keys that do not a�ect the X-
and Y-values of the legitimate points [31]. In the case of LIS models, the insertion of a single,
maliciously-crafted key kpoisoned will cause a shift in the rank of all keys larger than kpoisoned . This
change will in turn trigger a shift of the CDF, thus compounding the e�ect of the adversarial
insertion. To this date, the “compounding e�ect of adversarial insertion” has only been studied
by the authors of [33]. This thesis will build up on their results and investigate the e�ects of
poisoning attacks on dynamic learned index structures such as ALEX and Dynamic-PGM.

5.2 Linear Regression Models on CDF

To �t a linear regression model on CDF, LIS models usually rely on the ordinary least squares
method as described in De�nition 1.

17

De�nition 1 (Linear Regression on CDF). Let K = {k1, · · · , kn} ✓ K be the set of integers
that correspond to the keys of the index. Every key ki 2 K has its associated rank ri 2 [1, n]. The
linear regression model on a CDF computes a pair of regression parameters (a, b) that minimizes
the following mean squared error (MSE) function :

min
a,b
L

⇣
{ki, ri}ni=1, a, b

⌘
= min

a,b

✓X
n

i=1
(aki + b � ri)2

◆
.

The minimization problem of De�nition 1 can be solved by deriving a closed-form solution when
the set K is treated as a sample from the set of keys K . Based on this, the sample mean of the key
set is de�ned as MK and the sample mean of the rank set is de�ned as MR. Similarly, the sample
variance is de�ned as VarK and VarR, and the sample covariance between K and R as CovKR. Lastly,
the sample mean of the squares of the keys, resp. ranks, is de�ned as MK2 , resp. MR2 . Recall
that the formulas of variance and covariance are CovXY = MXY � MX MY , VarX = MX2 � M

2
X
and

VarX = CovXX .

Using these formulas and the fact that the rank R can be approximated via R = aK + b gives us
CovKR = Cov(K, aK + b). To solve these equations for a and b, we use CovKR = a · CovKK + 0 =
a · VarKK which yields a = CovKR

VarK
and b = MR � a

⇤
MK .

The Linear Regression from De�nition 1 hence admits the following closed-form solution:

a
⇤ = CovKR

VarK
, b

⇤ = MR � a
⇤
MK .

5.3 Poisoning Attacks on CDFs

In [33], the authors introduced a novel poisoning attack for linear regression on CDFs called
GreedyPoisoningRegressionCDF. However, to generate a poisoning key, the GreedyPoisoningRe-
gressionCDF algorithm requires one iteration through the whole keyspace K. Because of the
massive amount of computation involved, the algorithm therefore does not scale to the context of
very large datasets (> 200M keys). This research addresses these shortcomings by introducing a
distributed poisoning attack GreedyDistributedPoisoningRegressionCDF that can be scaled to use
an arbitrary number of computational resources.

De�nition 2 describes the poisoning strategy of an adversary targeting linear regression models
on CDF. The parameter � denotes the upper bound that limits the size of the poisoning keyset
P and is chosen to be proportional to the size of the keyset. In the experiments described in
Section 6.1, � was set to � = 0.0001n.

18

De�nition 2 (Poisoning Linear Regression on CDF). Let K be the set of n integers that
correspond to the keys and let P be the set of p integers that comprise the poisoning keys. The
augmented set on which the linear regression model is trained is {(k01, r01), (k02, r

0
2), · · · , (k0

n0 , r
0
n0)},

where k
0
i
2 K [P and r

0
i
2 [1, n + p]. The goal of the adversary is to choose a set P of size at

most � so as to maximize the loss function of the augmented set K [P:

arg max
P s.t. |P|�

min
a,b
L

⇣
{k0

i
, r0

i
}n+p

i=1 , a, b
⌘!

5.3.1 The E�ect of Poisoning on CDF

This section describes the e�ect of the poisoning attack on CDF by using a simple example with
n = 2000 keys. Figure 9 (a) shows the regression line for the original key set K on the X-axis and
the corresponding ranks R on the Y-axis, while Figure 9 (b) shows the regression line after the
poisoning. To calculate the MSE, one can sum up the squares of the distances of the points from
the regression line.

(a) Regression before poisoning (MSE = 22.99). (b) Regression after poisoning (MSE = 8675.83).

Figure 9: Illustration of the compound e�ect of poisoning.

In a typical setting of poisoning regression models, the addition of a single point has limited
overall impact since all the other points stay in their original X-, Y-coordinates. Thus, even if
the original regression line is maintained, the MSE error would only increase by the contribution
introduced by the individual poisoning point. In the case of poisoning on CDF, the addition of a
single point can a�ect the rank (i.e., Y-coordinate) of many original points of the CDF.
This is known as the compound e�ect of poisoning on CDF: Inserting p poisoning keys at location
kinsertion will shift the ranks of the points with key k > kinsertion upwards by the number of
poisoning keys p that were inserted.

5.3.2 GreedyPoisoningRegressionCDF Algorithm

A poisoning attack that speci�cally targets the CDF has been �rst introduced by the authors of
[33]. In their work, the authors derived a closed-form solution to compute the evaluation of the
loss function for the poisoned keyset. In the following section, a short recap of this work is given.
Further details can be found in [33].

19

Let (k1, r1), . . . , (kn, rn) be the sequence of pairs of keys and ranks for a dataset. The set of keys
k1, . . . , kn imply a collection of subsequences in the key domain such that each subsequence is
comprised of consecutive non-occupied keys. The sequence S is de�ned such that the element
S (i) corresponds to the i-th smallest key among all the endpoints from all subsequences.

The attacker �rst calculates the e�ect of inserting the �rst potential poisoning key S (1), which
implies the calculation of the values MK(1),MK2 (1),MKR(1), and L(1). The e�ect of inserting
poisoning key S (i + 1) on the loss function L(i + 1), can be computed in constant time via:

MK (i + 1) = MK (i) +
�S (i)
n + 1

, M
K2 (i + 1) = M

K2 (i) +
(2S (i) + �S (i))�S (i)

n + 1
, MR(i) =

n + 2
2

, M
R2 (i) =

(n + 2)(2n + 3)
6

, MKR(i + 1) = MKR(i) +
T (i)�S (i)

(n + 1)

L(i + 1) = � (MKR(i + 1) � MK (i + 1)MR(i + 1))2

M
K2 (i + 1) � (MK (i + 1))2 + M

R2 (i + 1) � (MR(i + 1))2

The above calculation maximizes the error of the poisoning for a single poisoning key in O(n) time
complexity. It runs as a subroutine of the GreedyDistributedPoisoningRegressionCDF algorithm,
see line 3 - 10 in algorithm 1.

5.3.3 GreedyDistributedPoisoningRegressionCDF Algorithm

Figure 10: Procedure for distributed poisoning attack on large keysets.

As a contribution of this thesis, the GreedyPoisoningRegressionCDF algorithm described by [33]
was extended to make it scale to very large datasets (> 200M keys). Speci�cally, the constraint
on the greedy approach, where at each iteration the attacker makes a locally optimal decision
and inserts the poisoning key that maximizes the error of the whole augmented keyset, has been
relaxed. The result of this work is the GreedyDistributedPoisoningRegressionCDF algorithm which
is presented in algorithm 1.

The core idea of GreedyDistributedPoisoningRegressionCDF is to distribute the dataset between
multiple processing cores, with each core being responsible for poisoning only a part of the original
dataset. Because executing the poisoning attack is computationally intensive, the author of this
work has used a compute-optimized Virtual Machine instance of type c2-standard-30 running on
Google Compute Engine1 with 30 vCPUs and 123 GB of RAM. Figure 10 shows the process of
poisoning a 200M key dataset with 25 CPU cores.

1Google Cloud Platform - Compute Engine: https://cloud.google.com/compute

20

https://cloud.google.com/compute

Algorithm 1: G����� D���������� P�������� R��������� CDF
Data: The number of allowed poisoning keys p, the original dataset for the regression {(k1 , r1), . . . , (kn , rn)} where ki 2 K and ri 2 [1, n], the number of CPUs m.
Result: Set of poisoning keys P such that P \ K = ; and |P| = p.

1 Initialize the set of poisoning keys P ;;
2 Split the original dataset into m chunks with size n

m
;

3 Distribute the data chunks to the CPU cores along with number of poisoning keys p

n
;

4 for every j from 1 to p

n
do

5 Partition the non-occupied keys, i.e., keys not in K [P, into subsequences such that each subsequence consists of consecutive non-occupied keys;
// Due to convexity, the loss function is maximized at an endpoint

6 Extract the endpoints of each subsequence and sort them to construct the new sequence of endpoints S (i), where i  2(n + j);
7 Randomly sample the sequence of endpoints S (i) without replacement to reduce the number of potential endpoints;
8 Compute the rank that key S (i) would have if it was inserted in K [P and assign this rank as the i-th element of the new sequence T (i), where i  2(n + j);

// Evaluate each sequence for the smallest endpoint

9 Compute the e�ect of choosing S (1) as a poisoning key and inserting it to K [P with the appropriate rank adjustments. Speci�cally, evaluate the sequences
each of which is the mean M for a di�erent variable, e.g., K, R, KR. Compute MK (1),M

K2 (1),MKR(1), and L(1) ;
10 for every i from 2 to the length of sequence S do
11 Compute the e�ect of choosing S (i + 1) as a poisoning key by calculating the loss function L(i + 1) from the equations in ??;
12 end
13 De�ne as kOPT S (arg maxiL(i)) the chosen poisoning key which maximizes the loss;
14 Augment P as P P [kOPT ;
15 end
16 Collect the set of poisoning keys P from the CPUs;
17 return the set of poisoning keys P;

Figure 11: GreedyDistributedPoisoningRegressionCDF attack on dataset with n=2000 keys.

An illustration of the distributed poisoning attack is shown in Figure 11. It presents the application
of the distributed poisoning algorithm using 4 CPU cores on a dataset of n=2000 keys. It can
be observed that the greedy approach places poisoning keys in a dense area to exacerbate the
non-linearity of the CDF and consequently increase the error.

21

Chapter

6
Evaluation

6.1 Experimental Setup

To evaluate the e�ectiveness of the poisoning attack described in Chapter 4, the author of this
work has implemented a novel benchmarking system that facilitates the execution of multiple
experiments with poisoned and non-poisoned datasets. The overall system architecture is shown
in Figure 12 and further outlined below.

Figure 12: Benchmarking architecture used for experiments.

As shown in Figure 12, the evaluation is performed by using four real-world datasets that consist
of 200 million keys each. These datasets are described in detail in Section 6.1.3 and are called non-
poisoned datasets. To execute the poisoning attack, each of the datasets is poisoned by executing
the attack described in Chapter 5 with a poisoning threshold of p = 0.0001. The result obtained
from executing the poisoning attack is referred to as poisoned datasets.

In the next step, both the poisoned and non-poisoned datasets are evaluated across a variety of
di�erent workload scenarios as described in Section 6.1.2. To measure the impact of the poisoning
attack in terms of deterioration of throughout of the LIS models, the SOSD benchmark published
by Kipf et al. [37] is used. The source code for the SOSD benchmark is available online as
open-source [42], but had to be signi�cantly extended for the purpose of this research. The
modi�cations to the source code are available online in this author’s GitHub repository2.

2Modi�ed version of the SOSD Benchmark: https://github.com/Bachfischer/SOSD/tree/develop.

22

https://github.com/Bachfischer/SOSD/tree/develop

The main contributions of this research that were incorporated into the SOSD benchmark are:

• extension of SOSD benchmark to facilitate write operations

• extension of SOSD benchmark to support Dynamic PGM-Index

• modi�cations to measure index performance via throughput (instead of lookup latencies)

• update of the source code for indexes under evaluation to their latest version.

The evaluation of the learned indexes was performed on a Virtual Machine instance of type
e2-standard-8 running on Google Compute Engine with 8 vCPUs and 32 GB of RAM.

6.1.1 Evaluated Indexes

The experiments performed in this research focus on indexes that support dynamic updates
(insert and delete operations) and whose source code is readily available to the community as
open-source. These indexes are ALEX, Dynamic-PGM and B+ tree.
The RMI index [1] does not support write operations and was therefore excluded in the evaluation.
The LIPP index supports write operations and is available to the research community as open-
source code on Github [43]. However, after performing initial experiments for this research, the
LIPP model was deemed to not be su�ciently reliable and scalable to very large datasets such
as those used in this thesis. Due to these shortcomings, the LIPP index was excluded from the
evaluation performed in this work.

Focusing on dynamic LIS models allows the comparison across di�erent workloads (read- and
writes), similar to what would be observed in a real-world deployment. Further details on the
evaluated indexes as well as links to their respective source code repository are given in Table 3.

Method Description Type Hyperparameters Source Code
ALEX [2] Learned - [41]
Dynamic PGM-Index [12] Learned maximum error ✏ [44]
B+ tree [45] Tree - [46]

Table 3: Overview of evaluated indexes.

In the following section, a brief overview of the evaluated index implementations and their
respective hyperparameters is given. All benchmarks were performedwithmultiple con�gurations
(variants) of these indexes. To obtain the �nal results reported in this research, the overall average
across all con�gurations was calculated.

Learned indexes:

The learned indexes used in this experiment are the ALEX [2] and PGM-Index [12] implementa-
tions (overview in Section 2.1).

The standard variant of the PGM-Index does not support dynamic updates, so for the purpose of
this research, the dynamic version of the PGM-index (Dynamic PGM-Index) was used [44]. The
PGM-Index provides a tunable hyperparameter ✏ that controls the maximum error bound during
lookups. To evaluate the performance of the Dynamic PGM-Index under di�erent con�gurations,
multiple variations of the index were tested by varying the ✏ parameter during index creation.

23

The ALEX implementation supports dynamic updates by default and does not require the tuning
of any hyperparameters [41]. Therefore, to evaluate the performance of ALEX under di�erent
con�gurations, the size of the index was varied by adjusting the number of keys that are inserted
during index creation. This is done by inserting only every i-th key when initially constructing /
bulk-loading the index from the datasets.

Trees:

A B+ tree [45] is a traditional in-memory index structures. Like ALEX, the B+ tree data structure
does not require any hyperparameters to be tuned [46]. Instead, and similar to ALEX, during
evaluation the size of the B+ tree was varied by adjusting the number of keys that are inserted
during construction of the index.

6.1.2 Workloads

The primary metric for evaluating the performance of the learned indexes is the throughput
in terms of million operations per second. The throughput is measured against a variety of
workloads, each workload consisting of 20M keys:

(a) a read-only workload

(b) a read-heavy workload with 90% reads and 10% inserts,

(c) a write-heavy workload with 10% reads and 90% inserts,

(d) a write-only workload, to complete the read-write spectrum.

First, for each workload, the index is constructed by bulk-loading it with 200M keys from the
given dataset. Next, to measure read throughput of the index, a certain number of lookup keys is
selected from the dataset and the index is queried for the keys’ position. To measure write (insert)
throughput, random keys that are not present in the dataset are generated and inserted into the
index. For each operation, the time required for the execution of the workload is tracked and used
to calculate the average throughput in million operations per second.

6.1.3 Datasets

Previous research has shown that learned indexes adapt well to synthetic data sampled from
probability distributions [38]. To make the experimental setup of this research as realistic as
possible, four real-world datasets from the SOSD benchmark [37] were used: books, fb, osmc and
wiki. The datasets have already been used in previous experiments by the research community
[39], [37] and are available online [47].

(a) CDF for books (b) CDF for fb (c) CDF for osmc (d) CDF for wiki

Figure 13: CDFs of evaluated datasets [47].

24

Each dataset from the SOSD benchmark consists of 200M 64-bit unsigned integer keys. The CDFs
of the four datasets are shown in Figure 13, and detailed characteristics of the evaluated datasets
are listed in Table 4.

books fb osmc wiki
Num keys: 200M 200M 200M 200M
Key type: 64-bit uint 64-bit uint 64-bit uint 64-bit uint
Total size: 1.53GB 1.53GB 1.53GB 1.53GB
Uniqueness: Unique Unique Duplicates Duplicates

Table 4: Dataset characteristics

books: This dataset is based on book popularity data from Amazon. Each key in the dataset
represent the popularity of a particular book on Amazon.

fb: The keys in this dataset represent Facebook user IDs, where each key uniquely identi�es a
particular user. This dataset contains 21 outliers at the upper end of the key space that are several
orders of magnitude larger than the rest of the keys.

osmc: The keys in this dataset represent cell IDs on OpenStreetMap. This dataset has clusters
that are artifacts of projecting two-dimensional data into one-dimensional space [38].

wiki: The keys in this dataset represent edit timestamps on Wikipedia. Each key represents the
time an edit was committed.

6.2 Experimental Results

The results of the evaluation are presented in Figure 14 and Figure 15 and detailed results are
available in the Appendix. Figure 14 shows the performance of the learned index models in the
non-poisoned setting, while Figure 15 shows the performance after the poisoning attack has been
executed, i.e., after the insertion of 20.000 malicious poisoning keys.

From the plots, it can be seen that ALEX dominates B+ tree and Dynamic-PGM in almost all
Read-only and Read-heavy workloads. In cases where the CDF is di�cult to approximate (such
as with the osmc dataset), B+ tree also performs well with approximately 9 million ops / second
for the Read-heavy workloads. In the Write-heavy and Write-only workloads, Dynamic PGM
dominates the other data structures across almost all datasets.

Figure 16 shows the performance deterioration in % between the non-poisoned and poisoned
workload. As shown in the plots, introducing only a tiny subset of poisoning keys into the datasets
(the experiments were performed with a poisoning threshold of p = 0.0001) can already cause a
major performance deterioration in terms of throughput. Out of the evaluated data structures,
Dynamic-PGM seems to be particularly prone to poisoning attacks, especially when evaluated on
the wiki dataset.

The performance of ALEX also �uctuates and deteriorates signi�cantly after the poisoning attack
is executed on the books dataset. The “negative” performance deterioration on the Read-only

25

(a) Read-only workload (b) Read-heavy workload (c)Write-heavy workload (d) Write-only workload

Figure 14: Comparison of throughput for di�erent LIS models (Non-poisoned scenario).

(a) Read-only workload (b) Read-heavy workload (c)Write-heavy workload (d) Write-only workload

Figure 15: Comparison of throughput for di�erent LIS models (Poisoned scenario).

workload for the fb and osmc datasets indicate a minor speed-up of the ALEX model after it is
being evaluated on the poisoned dataset. However, the di�erence between the poisoned and
non-poisoned scenario is only minor and therefore negligible.

Another interesting observation is that the performance of the B+ tree data structure does not
seem to be impacted by the poisoning attack, as it remains stable with an performance impact of
less than 5% across all workloads and datasets. This can attributed to the tree-like structure of a
B+ tree which exhibits proven worst-case guarantees in terms of algorithmic complexity.

(a) Read-only workload (b) Read-heavy workload (c)Write-heavy workload (d) Write-only workload

Figure 16: Performance deterioration of LIS models under adversarial workload.

The experimental evaluation shows that LIS models are prone to poisoning attacks and lose
their perceived performance bene�ts over traditional data structures like B+ trees when they
are tested on datasets with a CDF that is di�cult to approximate. This gives rise to the remark
that “adversarial workload matters” because it forces the data structure to exhibit its worst-case
algorithmic complexity.

26

Chapter

7
Discussion

7.1 Limitations

Even though the experimental results shown in this thesis are highly convincing, a variety of
limitations apply.

The poisoning attack described in this research was executed with a poisoning threshold of
p = 0.0001, which yields 20.000 poisoning keys for a dataset containing 200M keys in total.
Contrary to the large-scale attack executed in this thesis, previous work on poisoning attacks has
targeted much smaller key sizes (only up to 10.000 keys), but has made use of a larger poisoning
threshold (typically in the range of p = 0.01 to p = 0.2). Because of the massive amount of
computational resources required to generate a larger poisoning key set, the author of this work
has abstained from performing experiments with larger poisoning thresholds. It is assumed
that executing the poisoning attack with a larger poisoning threshold would increase the e�ects
described in Section 6.2 even further.

As described in Chapter 6, the experiments in this research were performed on a Virtual Machine
(VM) instance of type e2-standard-8 running on Google Compute Engine with 8 vCPUs and 32 GB
of RAM. Because the VM instance is running on a shared physical host along other VMs, there is
the potential that the VM could exhibit slightly di�erent performance characteristics depending
on the I/O demand caused by the other VM instances running in parallel on the same host.

7.2 Recommendations

This work has shown how a large-scale poisoning attack against dynamic LIS models can be
executed. Potential mitigation of poisoning attacks have been studied extensively in recent years,
but were focused primarily on neural network models [48] [49], [50]. Approaches for defending
against poisoning attacks on linear regression models are less prevalent in the literature.

In [31], Jagielski et al. proposed a poisoning detection algorithm for linear regressions called TRIM.
It recovers the legitimate non-poisoned dataset by searching for the keys that cause the largest
loss and identify them as poisoning keys. Another potential mechanism for defending regression
models against poisoning attacks has recently been proposed by Weerasinghe et al. [51] and is
based on measuring the deviation of a given data point’s local Local Intrinsic Dimensionality (LID)
with respect to its neighbors. Through experimental evaluation, Weerasinghe et al. were able to
show the e�ectiveness of the defense mechanism and consistently outperformed other defenses
such as TRIM.

27

Two major limitations arise when applying TRIM or the LID algorithm to defend against the
poisoning attack described in this work. Firstly, in the LIS setting, the rank for each key depends
on the value of all other keys in the dataset; this implies that the mitigation has to iteratively
re-calibrate its parameters and as a result become extremely ine�cient. Secondly, the poisoning
keys are typically concentrated around legitimate keys. It is therefore assumed that no known
mitigation can exclusively remove poisoning keys without also removing a signi�cant amount of
legitimate keys.

7.3 Future Directions

This research has successfully executed a large-scale poisoning attack on dynamic learned index
models by poisoning the CDF of the data that they try to approximate. This work was focused
exclusively on poisoning models that try to approximate the CDF via linear regression. Recent
publications have introduced other models for constructing a LIS, such as polynomial interpolation
[4] and logarithmic error regression [40]. These models also provide an interesting target for
poisoning attacks.

While the poisoning attack described here works by introducing poisoning keys prior to training
the index models, future research may also choose to investigate how an adversary could leverage
the update functionality of dynamic learned index models to insert and remove keys from a
trained LIS model at runtime to deteriorate the �t of the LIS.

28

Chapter

8
Conclusion

The recent emergence of LIS has been driven by the desire to overhaul the architecture of modern
database systems by replacing traditional data structures such as B+ trees with machine learning
models. This is based on the assumption that by replacing a B+ tree data structure with a ML
model, a performance improvement from O(log n) to O(1) is theoretically possible.

Using ML models to approximate the index of a database works by training a LIS model on the
available data, i.e., keyset. In this work, a poisoning attack for very large keysets (up to 200M
keys) was executed. It builds on the observation that LIS models try to approximate the CDF of
the keyset by training series of linear regression models. By executing the poisoning attack, a
malicious adversary poisons the keyset prior to constructing the LIS.

The poisoning attack described in this thesis was mounted against two dynamic LIS models and
one traditional data structure: ALEX, Dynamic-PGM and B+ tree. The evaluation was performed
using four di�erent datasets that are part of the SOSD benchmark [37]. To evaluate the success of
the poisoning attack, the throughput of the indexes against a series of workload scenarios was
measured. The experimental evaluation of the LIS models has shown that learned index structures
like ALEX and Dynamic PGM-Index are prone to poisoning attacks and exhibit signi�cantly
worse performance after only a small subset of poisoning keys is introduced into the keyset
(poisoning threshold p = 0.0001). In contrast, the B+ tree data structure is relatively robust and
exhibits no signi�cant performance deterioration under adversarial workload.

The results from this research motivate the study of worst-case performance behavior of LIS
models. The poisoning attack and benchmark harness described in this work lay the foundation
for future study of LIS under an adversarial setting and can be easily adapted for future research
purposes.

29

List of Figures

1 Learned index as a CDF [1] . 4

2 A multi-staged RMI model [1]. 5
3 A Radix Spline index [13]. 6
4 A PGM index [12]. 7
5 The design of ALEX [2]. 8
6 The structure of LIPP [18]. 9

7 Execution of data poisoning attack. 14

8 Introducing extreme outlier keys can trigger a crash in ALEX with < 10 poisoning
keys. 16

9 Illustration of the compound e�ect of poisoning. 19
10 Procedure for distributed poisoning attack on large keysets. 20
11 GreedyDistributedPoisoningRegressionCDF attack on dataset with n=2000 keys. 21

12 Benchmarking architecture used for experiments. 22
13 CDFs of evaluated datasets [47]. 24
14 Comparison of throughput for di�erent LIS models (Non-poisoned scenario). . . 26
15 Comparison of throughput for di�erent LIS models (Poisoned scenario). 26
16 Performance deterioration of LIS models under adversarial workload. 26

30

List of Tables

1 Overview of LIS implementations . 10

2 Worst-case complexity for lookups & inserts among dynamic Learned Indexes. . 15

3 Overview of evaluated indexes. 23
4 Dataset characteristics . 25

31

Acronyms

ALEX Adaptive Learned indEX

CDF Cumulative Distribution Function

COLIN Cache-cOnscious Learned INdex

DAG Directed Acyclic Graph

FMCD Fastest Minimum Con�ict Degree

GA Gapped Array

LID Local Intrinsic Dimensionality

LIPP Learned Index with Precise Positions

LIS Learned Index Structure

LS Linear Spline

MSE Mean Squared Error

ML Machine Learning

PGM Piecewise Geometric Model

PLA Piecewise Linear Approximation

RMI Recursive Model Index

RS Radix Spline

VM Virtual Machine

32

Bibliography

[1] Tim Kraska, Alex Beutel, Ed H Chi, Je�rey Dean, and Neoklis Polyzotis: The case for learned
index structures. In Proceedings of the 2018 International Conference on Management of Data,
pages 489–504, 2018.

[2] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang,
Badrish Chandramouli, Johannes Gehrke, and Donald Kossmann: Alex: an updatable
adaptive learned index. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 969–984, 2020.

[3] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau: From wisckey to bourbon: A learned index for
log-structured merge trees. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 155–171, 2020, ISBN 193913319X.

[4] Naufal Fikri Setiawan, Benjamin IP Rubinstein, and Renata Borovica-Gajic: Function
interpolation for learned index structures. In Australasian Database Conference, pages 68–80.
Springer, 2020.

[5] Ali Hadian and Thomas Heinis: Interpolation-friendly b-trees: Bridging the gap between
algorithmic and learned indexes. 2019.

[6] Hussam Abu-Libdeh, Deniz Altınbüken, Alex Beutel, Ed H Chi, Lyric Doshi, Tim Kraska,
Andy Ly, and Christopher Olston: Learned indexes for a google-scale disk-based database.
arXiv preprint arXiv:2012.12501, 2020.

[7] Chuzhe Tang, Zhiyuan Dong, Minjie Wang, Zhaoguo Wang, and Haibo Chen: Learned
indexes for dynamic workloads. arXiv preprint arXiv:1902.00655, 2019.

[8] Antonio Bo�a, Paolo Ferragina, and Giorgio Vinciguerra: A “learned” approach to quicken
and compress rank/select dictionaries. In 2021 Proceedings of the Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 46–59. SIAM, 2021.

[9] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska: Learning
multi-dimensional indexes. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, pages 985–1000, 2020.

[10] Stephen Macke, Alex Beutel, Tim Kraska, Maheswaran Sathiamoorthy, Derek Zhiyuan
Cheng, and EH Chi: Lifting the curse of multidimensional data with learned existence indexes.
InWorkshop on ML for Systems at NeurIPS, 2018.

[11] Darryl Ho, Jialin Ding, Sanchit Misra, Nesime Tatbul, Vikram Nathan, Vasimuddin Md, and
Tim Kraska: Lisa: towards learned dna sequence search. arXiv preprint arXiv:1910.04728,
2019.

33

[12] Paolo Ferragina and Giorgio Vinciguerra: The pgm-index: a fully-dynamic compressed
learned index with provable worst-case bounds. Proceedings of the VLDB Endowment,
13(10):1162–1175, 2020, ISSN 2150-8097.

[13] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim
Kraska, and Thomas Neumann: Radixspline: a single-pass learned index. In Proceedings of the
Third International Workshop on Exploiting Arti�cial Intelligence Techniques for Data
Management, pages 1–5, 2020.

[14] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska: Tsunami: A learned
multi-dimensional index for correlated data and skewed workloads. arXiv preprint
arXiv:2006.13282, 2020.

[15] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska:
Fiting-tree: A data-aware index structure, 2019. https://doi.org/10.1145/3299869.3319860.

[16] Michael Mitzenmacher: A model for learned bloom �lters, and optimizing by sandwiching.
arXiv preprint arXiv:1901.00902, 2019.

[17] Ali Hadian and Thomas Heinis: Considerations for handling updates in learned index
structures. In Proceedings of the Second International Workshop on Exploiting Arti�cial
Intelligence Techniques for Data Management, pages 1–4, 2019.

[18] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing: Updatable
learned index with precise positions. arXiv preprint arXiv:2104.05520, 2021.

[19] Zhou Zhang, Pei Quan Jin, Xiao Liang Wang, Yan Qi Lv, Shou Hong Wan, and Xi Ke Xie:
Colin: A cache-conscious dynamic learned index with high read/write performance. Journal of
Computer Science and Technology, 36(4):721–740, 2021, ISSN 1860-4749.

[20] Mark H Overmars: The design of dynamic data structures, volume 156. Springer Science and
Business Media, 1987, ISBN 354012330X.

[21] Ryan Marcus, Emily Zhang, and Tim Kraska: Cdfshop: Exploring and optimizing learned
index structures. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 2789–2792, 2020.

[22] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar:
Adversarial machine learning. In Proceedings of the 4th ACM workshop on Security and
arti�cial intelligence, pages 43–58, 2011.

[23] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar: The security of
machine learning. Machine Learning, 81(2):121–148, 2010, ISSN 1573-0565.

[24] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn
Song, Aleksander Madry, Bo Li, and Tom Goldstein: Data security for machine learning:
Data poisoning, backdoor attacks, and defenses. arXiv preprint arXiv:2012.10544, 2020.

[25] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli: Towards poisoning of deep learning algorithms
with back-gradient optimization. In Proceedings of the 10th ACM Workshop on Arti�cial
Intelligence and Security, pages 27–38, 2017.

34

https://doi.org/10.1145/3299869.3319860

[26] Battista Biggio, Blaine Nelson, and Pavel Laskov: Poisoning attacks against support vector
machines. arXiv preprint arXiv:1206.6389, 2012.

[27] Sanli Tang, Xiaolin Huang, Mingjian Chen, Chengjin Sun, and Jie Yang: Adversarial attack
type i: Cheat classi�ers by signi�cant changes. IEEE transactions on pattern analysis and
machine intelligence, 2019, ISSN 0162-8828.

[28] Battista Biggio and Fabio Roli:Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018, ISSN 0031-3203.

[29] Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea: Robust linear regression against
training data poisoning. In Proceedings of the 10th ACM Workshop on Arti�cial Intelligence
and Security, pages 91–102, 2017.

[30] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli:
Is feature selection secure against training data poisoning? In international conference on
machine learning, pages 1689–1698. PMLR, 2015.

[31] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li:
Manipulating machine learning: Poisoning attacks and countermeasures for regression
learning. In 2018 IEEE Symposium on Security and Privacy (SP), pages 19–35. IEEE, 2018,
ISBN 1538643537.

[32] Nicolas Müller, Daniel Kowatsch, and Konstantin Böttinger: Data poisoning attacks on
regression learning and corresponding defenses. In 2020 IEEE 25th Paci�c Rim International
Symposium on Dependable Computing (PRDC), pages 80–89. IEEE, 2020, ISBN 1728180031.

[33] Evgenios M Kornaropoulos, Silei Ren, and Roberto Tamassia: The price of tailoring the index
to your data: Poisoning attacks on learned index structures. arXiv preprint arXiv:2008.00297,
2020.

[34] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen: Generative poisoning attack method against
neural networks. arXiv preprint arXiv:1703.01340, 2017.

[35] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli: Evasion attacks against machine learning at test time. In
Joint European conference on machine learning and knowledge discovery in databases, pages
387–402. Springer, 2013.

[36] Shike Mei and Xiaojin Zhu: Using machine teaching to identify optimal training-set attacks
on machine learners. In Twenty-Ninth AAAI Conference on Arti�cial Intelligence, 2015.

[37] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim
Kraska, and Thomas Neumann: Sosd: A benchmark for learned indexes. arXiv preprint
arXiv:1911.13014, 2019.

[38] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons
Kemper, Thomas Neumann, and Tim Kraska: Benchmarking learned indexes. arXiv preprint
arXiv:2006.12804, 2020.

[39] Marcel Maltry and Jens Dittrich: A critical analysis of recursive model indexes. arXiv preprint
arXiv:2106.16166, 2021.

35

[40] Martin Eppert, Philipp Fent, and Thomas Neumann: A tailored regression for learned indexes:
Logarithmic error regression. 2021.

[41] Microsoft: Alex - a library for building an in-memory, adaptive learned index, 2021.
https://github.com/microsoft/ALEX, visited on 2021-07-08.

[42] Sosd benchmark, 2021. https://github.com/learnedsystems/SOSD, visited on 2021-07-08.

[43] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing: Lipp:
Updatable learned index with precise positions, 2021. https://github.com/Jiacheng-WU/lipp/,
visited on 2021-07-08.

[44] Paolo Ferragina and Giorgio Vinciguerra: Pgm-index: State-of-the-art learned data structure,
2021. https://github.com/gvinciguerra/PGM-index, visited on 2021-07-08.

[45] R. Bayer and E. McCreight: Organization and maintenance of large ordered indices.
https://doi.org/10.1145/1734663.1734671.

[46] Stx b+ tree, 2021. https://panthema.net/2007/stx-btree/, visited on 2021-07-08.

[47] Ryan Marcus, Andreas Kipf, and Alex van Renen: Searching on Sorted Data, 2019.
https://doi.org/10.7910/DVN/JGVF9A.

[48] Jayaram Raghuram, Varun Chandrasekaran, Somesh Jha, and Suman Banerjee: A general
framework for detecting anomalous inputs to dnn classi�ers, 2021.
http://proceedings.mlr.press/v139/raghuram21a.html.

[49] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael
Backes: Ml-leaks: Model and data independent membership inference attacks and defenses on
machine learning models. arXiv preprint arXiv:1806.01246, 2018.

[50] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y Zhao: Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 707–723. IEEE, 2019,
ISBN 153866660X.

[51] Sandamal Weerasinghe, Sarah M Erfani, Tansu Alpcan, Christopher Leckie, and Justin
Kopacz: Defending regression learners against poisoning attacks. arXiv preprint
arXiv:2008.09279, 2020.

36

https://github.com/microsoft/ALEX
https://github.com/learnedsystems/SOSD
https://github.com/Jiacheng-WU/lipp/
https://github.com/gvinciguerra/PGM-index
https://doi.org/10.1145/1734663.1734671
https://panthema.net/2007/stx-btree/
https://doi.org/10.7910/DVN/JGVF9A
http://proceedings.mlr.press/v139/raghuram21a.html

Chapter

A
Experimental Results

This chapter shows the results from the evaluation of learned indexes under di�erent workloads
using the non-poisoned and poisoned datasets. The workloads correspond to:

(a) a read-only workload

(b) a read-heavy workload with 90% reads and 10% inserts,

(c) a write-heavy workload with 10% reads and 90% inserts,

(d) a write-only workload, to complete the read-write spectrum.

A.1 Non-poisoned scenario

ALEX B+ tree Dynamic PGM Index
books 16162215 9863725 926508
fb 17498954 9399892 731971
osmc 6194756 14897510 917548
wiki 13687183 9259387 1268112

Workload (a): Throughput of evaluated LIS models in ops / second (20M lookups).

ALEX B+ tree Dynamic PGM Index
books 10728106 9238867 1215244
fb 1313206 9088619 998036
osmc 4704530 8839391 872240
wiki 9263433 6119975 1473184

Workload (b): Throughput of evaluated LIS models in ops / second (18M lookups, 2M inserts).

37

ALEX B+ tree Dynamic PGM Index
books 2921892 1796295 2605189
fb 2408246 1774400 2289189
osmc 1770611 1732262 2295980
wiki 1676874 1720761 3698999

Workload (c): Throughput of evaluated LIS models in ops / second (2M lookups, 18M inserts).

ALEX B+ tree Dynamic PGM Index
books 2353992 1477951 3028375
fb 2534546 1749967 2846518
osmc 1677064 1495389 2761089
wiki 1615591 1615169 4558578

Workload (d): Throughput of evaluated LIS models in ops / second (20M inserts).

A.2 Poisoned scenario

ALEX B+ tree Dynamic PGM Index
books 16243040 9460745 861921
fb 17821675 9384162 702158
osmc 6387984 14809695 899915
wiki 13233802 9134914 1017923

Workload (a): Throughput of evaluated LIS models in ops / second (20M lookups).

ALEX B+ tree Dynamic PGM Index
books 9819021 9366380 1245485
fb 1286960 9083855 1011879
osmc 4586141 8668881 784075
wiki 9204752 6143775 1169301

Workload (b): Throughput of evaluated LIS models in ops / second (18M lookups, 2M inserts).

38

ALEX B+ tree Dynamic PGM Index
books 2457741 1677875 2494472
fb 2358933 1705110 2240320
osmc 1816547 1751328 2310215
wiki 1672190 1790405 2701049

Workload (c): Throughput of evaluated LIS models in ops / second (2M inserts, 18M lookups).

ALEX B+ tree Dynamic PGM Index
books 2128055 1508457 3050597
fb 2445033 1738097 2777453
osmc 1581750 1481324 2719388
wiki 1579460 1582920 3949376

Workload (d): Throughput of evaluated LIS models in ops / second (20M inserts).

39

	Introduction
	Related Work
	Learned Index Structures
	Static Learned Index Structures
	Dynamic Learned Index Structures
	Discussion

	Adversarial Machine Learning
	Poisoning Attacks in Adversarial ML
	Poisoning Attacks on Learned Index Structures

	Preliminaries
	Terminology
	Background on Poisoning Attacks
	Adversarial Model
	Adversary's Goals
	Adversary's Capabilities & Knowledge
	Attack Evaluation Metric

	Poisoning Attacks on Dynamic Learned Index Structures
	Poisoning of Learned Index Structures by Manipulating the CDF
	Poisoning of Learned Index Structures by Introducing Outlier Keys

	Poisoning of Linear Regression Models by Manipulating the CDF
	Theoretical Setup
	Linear Regression Models on CDF
	Poisoning Attacks on CDFs
	The Effect of Poisoning on CDF
	GreedyPoisoningRegressionCDF Algorithm
	GreedyDistributedPoisoningRegressionCDF Algorithm

	Evaluation
	Experimental Setup
	Evaluated Indexes
	Workloads
	Datasets

	Experimental Results

	Discussion
	Limitations
	Recommendations
	Future Directions

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Appendices
	Experimental Results
	Non-poisoned scenario
	Poisoned scenario

